Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Our understanding of the fundamental role that soil bacteria play in the structure and functioning of Earth's ecosystems is ever expanding, but insight into the nature of interactions within these bacterial communities remains rudimentary. Bacterial facilitation may enhance the establishment, growth, and succession of eukaryotic biota, elevating the complexity and diversity of the entire soil community and thereby modulating multiple ecosystem functions. Global climate change often alters soil bacterial community composition, which, in turn, impacts other dependent biota. However, the impact of climate change on facilitation within bacterial communities remains poorly understood even though it may have important cascading consequences for entire ecosystems. The wealth of metagenomic data currently being generated gives community ecologists the ability to investigate bacterial facilitation in the natural world and how it affects ecological systems responses to climate change. Here, we review current evidence demonstrating the importance of facilitation in promoting emergent properties such as community diversity, ecosystem functioning, and resilience to climate change in soil bacterial communities. We show that a synthesis is currently missing between the abundant data, newly developed models and a coherent ecological framework that addresses these emergent properties. We highlight that including phylogenetic information, the physicochemical environment, and species‐specific ecologies can improve our ability to infer interactions in natural soil communities. Following these recommendations, studies on bacterial facilitation will be an important piece of the puzzle to understand the consequences of global change on ecological communities and a model to advance our understanding of facilitation in complex communities more generally.more » « less
-
Dust events originate from multiple sources in arid and semi-arid regions, making it difficult to quantify source contributions. Dust geochemical/mineralogical composition, if the sources are sufficiently distinct, can be used to quantify the contributions from different sources. To test the viability of using geochemical and mineralogical measurements to separate dust-emitting sites, we used dust samples collected between 2018 and 2020 from ten National Wind Erosion Research Network (NWERN) sites that are representative of western United States (US) dust sources. Dust composition varied seasonally at many of the sites, but within-site variability was smaller than across-site variability, indicating that the geochemical signatures are robust over time. It was not possible to separate all the sites using commonly applied principal component analysis (PCA) and cluster analysis because of overlap in dust geochemistry. However, a linear discriminant analysis (LDA) successfully separated all sites based on their geochemistry, suggesting that LDA may prove useful for separating dust sources that cannot be separated using PCA or other methods. Further, an LDA based on mineralogical data separated most sites using only a limited number of mineral phases that were readily explained by the local geologic setting. Taken together, the geochemical and mineralogical measurements generated distinct signatures of dust emissions across NWERN sites. If expanded to include a broader range of sites across the western US, a library of geochemical and mineralogical data may serve as a basis to track and quantify dust contributions from these sources.more » « less
-
The complex relationship between ecosystem function and soil food web structure is governed by species interactions, many of which remain unmapped. Phagotrophic protists structure soil food webs by grazing the microbiome, yet their involvement in intraguild competition, susceptibility to predator diversity, and grazing preferences are only vaguely known. These species-dependent interactions are contextualized by adjacent biotic and abiotic processes, and thus obfuscated by typically high soil biodiversity. Such questions may be investigated in the McMurdo Dry Valleys (MDV) of Antarctica because the physical environment strongly filters biodiversity and simplifies the influence of abiotic factors. To detect the potential interactions in the MDV, we analyzed the co-occurrence among shotgun metagenome sequences for associations suggestive of intraguild competition, predation, and preferential grazing. In order to control for confounding abiotic drivers, we tested co-occurrence patterns against various climatic and edaphic factors. Non-random co-occurrence between phagotrophic protists and other soil fauna was biotically driven, but we found no support for competition or predation. However, protists predominately associated with Proteobacteria and avoided Actinobacteria, suggesting grazing preferences were modulated by bacterial cell-wall structure and growth rate. Our study provides a critical starting-point for mapping protist interactions in native soils and highlights key trends for future targeted molecular and culture-based approaches.more » « less
-
null (Ed.)SARS-CoV-2 RNA detection in wastewater is being rapidly developed and adopted as a public health monitoring tool worldwide. With wastewater surveillance programs being implemented across many different scales and by many different stakeholders, it is critical that data collected and shared are accompanied by an appropriate minimal amount of meta-information to enable meaningful interpretation and use of this new information source and intercomparison across datasets. While some databases are being developed for specific surveillance programs locally, regionally, nationally, and internationally, common globally-adopted data standards have not yet been established within the research community. Establishing such standards will require national and international consensus on what meta-information should accompany SARS-CoV-2 wastewater measurements. To establish a recommendation on minimum information to accompany reporting of SARS-CoV-2 occurrence in wastewater for the research community, the United States National Science Foundation (NSF) Research Coordination Network on Wastewater Surveillance for SARS-CoV-2 hosted a workshop in February 2021 with participants from academia, government agencies, private companies, wastewater utilities, public health laboratories, and research institutes. This report presents the primary two outcomes of the workshop: (i) a recommendation on the set of minimum meta-information that is needed to confidently interpret wastewater SARS-CoV-2 data, and (ii) insights from workshop discussions on how to improve standardization of data reporting.more » « less
-
Abstract Quantifying the routing of snowmelt to surface water is critical for predicting the impacts of atmospheric deposition and changing land use on water quality in montane catchments. To investigate solute sources and streamflow in the montane Provo River watershed (Utah, USA), we used time‐series87Sr/86Sr ratios sampled at three sites (Soapstone, Woodland and Hailstone) across a gradient of bedrock types. Soils are influenced by aeolian dust contributions, with distinct87Sr/86Sr ratios relative to siliciclastic bedrock, providing an opportunity to investigate shallow versus deeper flow paths for controlling water chemistry. At the most upstream site (Soapstone), Sr concentrations averaged ~17 μg/L with minimal dilution during snowmelt suggesting subsurface flow paths dominated streamflow. However, a decrease in87Sr/86Sr ratios from ~0.717 during baseflow to as low as ~0.713 during snowmelt indicated the activation of shallow flow paths through dust‐derived soils. In contrast, downstream sites receiving water inputs from Sr‐rich carbonate bedrock (Woodland and Hailstone) exhibited strong dilution of Sr from ~120 to 20 μg/L and an increase in87Sr/86Sr ratios from ~0.7095 to ~0.712 during snowmelt. A three‐component mixing model using87Sr/86Sr ratios and Sr concentrations at Soapstone showed water inputs were dominated by direct snowmelt and flushed soil water during runoff and groundwater during baseflow. At Woodland and Hailstone, a two‐component mixing model showed that the river was a mixture of groundwater and up to 75% upstream channel water during snowmelt. Our findings highlight the importance of flushed soil water for controlling stream water discharge and chemistry during snowmelt, with the signal from the upstream site propagating downstream in a nested catchment. Further, aeolian dust contributes to the solute chemistry of montane streams with potential impacts on water quality along shallow flow paths. Potential contaminants in these surface soils (e.g., Pb deposition in dust) may have significant impacts on water quality during snowmelt runoff.more » « less
An official website of the United States government
